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A first-principle calculation is used to simulate the variation of lattice constant, total energy, and band -gap of hexagonal and 

cubic MgxZn1-xO alloys with different Mg composition. The calculated results show the lattice constant c and the ratio c/a 

decrease gradually for hexagonal MgxZn1-xO with Mg composition increasing, the total energy of hexagonal MgxZn1-xO alloys 

is lower than, equal to, and larger than that of the cubic one, respectively, the phase transition may occur with Mg 

composition is 0.79. In addition, the band-gap of hexagonal MgxZn1-xO has a bowing parameter of 0.38eV and 0.51eV for 

ordered and random structure. 
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1. Introduction 

 

Recently, ZnO has attracted great attention due to its 

potential applications in UV-lasing optoelectronic devices 

[1]; a critical step for producing high-efficiency ZnO 

devices is the fabrication of ZnO-based quantum wells and 

superlattices, for fabrication of such structures, a common 

approach is to develop ZnO-based alloys with their 

band-gap larger or smaller than that of ZnO [2,3]. In 1998, 

Ohtomo et al. proposed incorporating Mg into ZnO to tune 

the band-gap of the resulting ternary MgZnO alloys[4]. It 

is noted that ZnO is hexagonal while MgO has the cubic 

structure, but the similarity in ionic radii between 

Mg
2+

(0.57Å) and Zn
2+

(0.6Å) allows their replacement in 

either structure[5], while the Mg composition is within a 

certain range the hexagonal MgZnO may be available. 

However, the phase segregation and transition may occur 

as Mg composition increases [4]. Presently, the 

applications of these materials have been limited by the 

difficulties in growing homogeneous materials with low 

defect level, much properties aren’t clear very much until 

now and a lot of efforts have been made to grow high 

quality materials. Therefore, it is significant to understand 

the characteristics of MgZnO alloys more so as to use the 

materials better in ZnO based devices [6-8]. 

In this paper, a first-principle calculation is used to 

simulate the characteristics of MgZnO alloys with 

different Mg composition in hexagonal and cubic structure, 

the variation of lattice constant, total energy, and band-gap 

are calculated, the disorder effect on the characteristics is 

introduced using a cluster expansion approach.     

 

 

 

2. Computational method 

 

The present calculations are carried out using 

CASTEP code, which is based on density functional theory, 

using the Perdew-Wang generalized gradient 

approximation (GGA) as the exchange-correlation 

functional [9]. In order to simulate the ordered alloys with 

the hexagonal and cubic structure, we construct 8-atom 

MgnZn4-nO4 supercells. The ions are described using an 

ultrasoft pseudopotential scheme,
 
in which the orbitals of 

Mg (3s
2
), Zn (3d

10
4s

2
), and O (2s

2
2p

4
) are treated as 

valence electrons [10]. The wave functions are expanded 

in a plane-wave basis set up to cut-off energy of 450eV
 

[11], where the total energy converges to less than 2×

10
-6

eV/atom. Integrations over the Brillouin zone are 

performed using a 4 × 4 × 4 grid according to a 

Monkhorst-Pack set sampling-point scheme.  
 

 

3. Results and discussion 

 

3.1 Ordered alloys 

 

8-atom supercells of MgnZn4-nO4 with hexagonal and 

cubic structures are shown in Fig. 1 (a) and (b); n=0, 1, 2, 

3, 4 typifies 0, 0.25, 0.5, 0.75,1 of the Mg composition in 

MgxZn1-xO alloys, respectively. At first, the geometries of 

hexagonal MgnZn4-nO4 with different n are optimized. 

After geometry optimization, the lattice constants c and 

c/a, as well as the total energies are obtained for 

MgxZn1-xO alloys, as shown in Table 1.
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Fig. 1. The 8-atom hexagonal (a) and cubic (b) Mg1Zn3O4 supercell. 

 

 

Fig. 2 shows the lattice constants c of hexagonal 

MgxZn1-xO as a function of composition x, along with the 

available experimental results. The present calculations in 

GGA yield a slight overestimation of the lattice constants 

in comparison with the experimental values, but the 

difference between them is within the experimental error 

range. One can see from Fig. 2 that the introduction of Mg 

in ZnO leads the lattice constants c and c/a to decrease 

gradually. The lattice constants of ternary alloys are 

generally assumed to comply with a simple Vegard’s law, 

i.e., a linear relation of composition x. However, the lattice 

constants show some amount of deviation from the linear 

relation in Fig. 2; the curves can be approximated by the 

following definition:      

            

MgO ZnO( ) (1 ) (1 )cc x x c x c x x        ,   (1) 

 

Where c(x) is the lattice constant c of hexagonal 

MgxZn1-xO alloys, cMgO and cZnO are the lattice constant c 

of MgO and ZnO,δc is the deviation parameter for the 

lattice constant c, respectively. Using Eq.(1) we best fit the 

results in Fig. 2 by quadratic polynomial,δc = -0.14Å is 

obtained.  Then, the geometries of cubic MgnZn4-nO4 with 

different n are optimized; the lattice constants and the total 

energies are obtained. Fig.3 shows the lattice constants as 

a function of Mg composition, they gradually decrease 

with Mg alloying in ZnO, it is because the radii of Mg
2+

 

ionic is a little smaller than that of Zn
2+

 ionic. Similarly we 

fit the results in Fig. 3,δa =0.0034Å is obtained for cubic 

MgZnO. Compared to the hexagonal structure, the lattice 

constants of cubic MgZnO have very small deviation 

parameter and comply with the Vegard’s law well.  

 

 

 

Table 1. The calculated lattice constant (Å), total energy (eV) for hexagonal and cubic MgxZn1-xO alloys. 

 

x 0.0 0.25 0.50 0.75 1.0 

Hexagonal 

This work 
c (x) 5.249 5.234 5.219 5.190 5.121 

c/a 1.614 1.599 1.585 1.569 1.538 

Expt. c (x) [12] 
x 0.0 0.05 0.08 0.14 0.23 

 5.205 5.196 5.190 5.185 5.177 

Total 

energy 

Ordered -8630.776 -7893.504 -7156.213 -6418.898 -5681.565 

Random -8630.776 -7893.493 -7156.201 -6418.890 -5681.565 

Cubic 

a (x) 4.298 4.292 4.286 4.279 4.272 

Total 

energy 

Ordered -8629.535 -7892.734 -7155.899 -6419.030 -5682.121 

Random -8629.535 -7892.631 -7155.733 -6418.964 -5682.121 

 

O 

Mg Zn 

(a) 

O 

Zn 

Mg 

 

(b) 
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In Table 1, it can be seen the total energy of hexagonal 

MgxZn1-xO alloys is lower than, equal to, and larger than 

that of the cubic one, respectively. Fig.4 plots the 

total-energy difference between hexagonal and cubic 

MgZnO dependent on the Mg composition, the phase 

transition is likely to occur as the Mg composition is larger 

than 0.69 when the total energy of hexagonal MgxZn1-xO is 

equal to that of cubic MgxZn1-xO [13]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The lattice constants c of hexagonal MgxZn1-xO  

alloys dependent on the Mg composition. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The lattice constants of cubic MgxZn1-xO dependent 

 on the Mg composition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Composition dependence of the calculated 

total-energy difference between hexagonal and cubic 

MgZnO. 

 

The calculated band-gaps of hexagonal MgxZn1-xO are 

shown in Table 2 along with available experimental results, 

they are plotted in Fig.5 for further analysis, the bowing 

parameters are calculated by the following definition,  

( ) (MgO) (1 ) (ZnO) ( ) (1 )g g gE x x E x E b x x x           (2)  

Where Eg(MgO) and Eg(ZnO) are the calculated band-gaps 

of MgO and ZnO, respectively, Eg (x) are the band-gaps of 

MgxZn1-xO, b(x) is the band-gap bowing parameter. 

Substituting the calculated band-gaps in Eq.(2) and 

obtaining the best fit, a bowing parameter of about 0.38eV 

is obtained for the hexagonal MgZnO alloys. In this case, 

the GGA errors can be neglected since only the relatively 

data is important for bowing parameter calculation [14]. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The calculated band-gaps of hexagonal MgZnO as  

well as the correct value. 
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Table 2. Band-gap (eV) variation, bowing paramenter (b) in the ordered and random structures, as well as the experimental 

 data for hexagonal MgZnO alloys. 

 

       x 0 0.25 0.50 0.75 1.0   b (eV) 

Ordered structure 0.980 1.495 2.068 2.724  3.535 0.38 

Random structure 0.980 1.521 2.126 2.814 3.535 0.51 

x 0 0.33 0.33 0.36 0.51 b(eV) 

Expt. value 3.37[15] 3.87 [15] 4.1eV[4] 4.19 [16] 4.45[3]  0.56[17] 

                                  

Presently there are no experimental band-gap of 

hexagonal MgO reported, in order to investigate the 

reliability of the calculated bowing parameter, we also 

correct the calculated band-gap of hexagonal MgxZn1-xO 

simply by a rigid upward of them referred to the 

experimental value (3.37eV) of hexagonal ZnO, Fig. 5 

shows the deviation between experiment and simulation is 

not large. 

 

3.2. Random alloys 

 

In MgxZn1-xO alloys, a more probable situation is the 

alloy may be random. The properties of the random alloy 

may be simulated by considering the statistical mechanical 

distributions of the ordered structures. For obtaining such 

a statistical mechanical properties a cluster expansion 

method has been used in the past [18, 19], the coefficients 

of the cluster expansion may be derived by a first-principle 

calculation of a set of ordered compounds. This method 

which was first used for binary alloys can be extended to 

the ternary alloy in the case where the disorder is assumed 

to occur only on one type of site, say cation as is the case 

for the MgxZn1-xO alloys. The problem may further 

simplify if one truncates the cluster expansion at the level 

of the nearest neighbor tetrahedron interactions.  

Following this idea, any statistical properties F(x) of 

the random MgxZn1-xO at a particular composition x can be 

written as  

        

4

0

( ) ( )n n

n

F x P x F


           (3)          

4
4

( ) (1 )n n

nP x x x
n

 
  
 

           (4) 

Where Fn is the property for each of the five ordered 

structures, Pn (x) is a statistical weight, representing the 

probability that the nth short-range ordered structure 

occurs in the alloy. Using Eq.(4) we have calculated the 

band-gaps for the random hexagonal MgxZn1-xO at 

different Mg composition in Table 2, in Fig. 5 (solid line) 

the band-gap of the random alloys are depicted and the 

bowing parameter of 0.51eV is also obtain in Table 2, 

which is consistent well with the experimental value of 

0.56eV in Ref.16 and the calculated value of 0.87eV in 

Ref.17. In addition, the total energies of random 

MgxZn1-xO are also calculated in Table 1, the difference of 

the total energy between hexagonal and cubic structure is 

plotted in Fig. 4 (solid line), as the Mg composition is 

larger than 0.79 the total energy of hexagonal MgxZn1-xO 

is larger than that of cubic MgxZn1-xO and the phase 

transition is likely to occur. The calculated result indicates 

that the structure of the MgxZn1-xO alloys are hexagonal in 

large-scale Mg composition, MgxZn1-xO alloy are suitable 

for fabricating ZnO-based devices. 
 

 

4. Conclussion 

 

In summary, the structural and energy properties of 

MgxZn1-xO alloys dependent on the Mg composition are 

calculated using first-principle calculations. As the Mg 

composition increases, the lattice constants a of the 

hexagonal MgxZn1-xO increase from 3.253Å to 3.329Å, 

while the lattice constants c decrease from 5.249 Å to 

5.121Å, which results in the structure gradually deviating 

from the wurtzite structure; the deviation parameters from 

Vegard’s law areδa =0.041Å andδc = -0.14Å, respectively. 

The lattice constants of cubic MgxZn1-xO diminish 

gradually with the Mg composition increasing; it is 

because the atom radius of Mg
2+

 is a little smaller than that 

of Zn
2+

, the deviation parameter of δ a =0.0034Å is 

obtained. The total energy of hexagonal MgZnO is lower 

than, equal to, and larger than that of the cubic one, 

respectively; the phase transition is likely to occur as the 

Mg composition is larger than 0.79eV. In addition, the 

band-gaps of hexagonal MgZnO are calculated, a bowing 

parameter of 0.38eV and 0.51eV is obtained for ordered 

and random alloys, respectively. 
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